Blandarproblem

2006-01-17 23:00  
Gåsblandaren 2006
Fysik är två bokstäver gånger varandra som blir en tredje bokstav. Jag blir så full i skratt inför fysikaliska problem. De är så ohyggligt allvarliga. Och samtidigt så ohyggligt jönsiga." (Citat ur Gåsblandaren 1999, en skämttidning från KTH.)

Fast det finns ju också mer komplicerade fysikformler än av typen AB = C. Veckans problem har lite av Jeopardy över sig. Det gäller att formulera ett fysikproblem, som innehåller följande två data (och inga andra): tyngdaccelerationen g = 9,8 m/s2; trädets höjd H = 19,6 m. Svaret skall lyda "sökta massan m = 2,3 kg". Kan läsarna hitta ett sådant problem?

















Lösning:














Nej, ett sådant problem går inte att formulera.
De två givna storheterna g och H innehåller inte massenheten kg. Då finns det ingen möjlighet att kombinera dem i en "formel", oavsett hur komplicerad den är, så att resultatet uttrycks som en massa. Däremot går det att formulera ett problem där svaret är en viss tid, ty kombinationen (H/g)1/2 har dimensionen tid. Även ett svar i form av en fart går bra; (gH)1/2 har SI-enheten m/s. Kombinationen (gH5)1/2 har SI-enheten m3/s, dvs ett volymflöde. Fast i det fallet är det kanske svårt att få till en uppgift som hänvisar till höjden H av ett träd.

I uppgiften citerades Blandaren: "Fysik är så: två bokstäver gånger varandra som blir en tredje bokstav." Det är ofta sant. Om man då tänker på enheterna finns det ingen risk att man "kombinerar bokstäverna fel". Sambandet lambda·f = c mellan våglängd lambda, frekvens f och utbredningsfart c måste till exempel ha just denna form (så när som på en konstant, exempelvis 2pi om frekvensen uttrycks i radianer per sekund).

Göran Grimvall

Kommentarer

Välkommen att säga din mening på Ny Teknik.

Principen för våra regler är enkel: visa respekt för de personer vi skriver om och andra läsare som kommenterar artiklarna. Alla kommentarer modereras efter publiceringen av Ny Teknik eller av oss anlitad personal.

  Kommentarer

Debatt

Läs mer